A pair of capacitors $C_1 = 38.0 \ \mu$ F and $C_2 = 28.0 \ \mu$ F are connected to a battery $V_{
m b} = 60.0 \
m V$ and a switch.

The capacitors are initially uncharged. After the switch has been closed and the capacitors are fully charged, what is the ratio Q_2/Q_1 of the charges on the capacitors, where Q_1 is the charge on C_1 and Q_2 is the charge on C_2 ?

$$\frac{1}{R_1} = 1$$

O (b) 1

A pair of capacitors $C_1 = 20.0 \ \mu$ F and $C_2 = 15.0 \ \mu$ F are connected to a battery $V_b = 60.0 \ V$ and a switch The capacitors are initially uncharged. After the switch has been closed and the capacitors are fully charged, what is the ratio V_2/V_1 of the voltages across the capacitors, where V_1 is the voltage across C_1 and V_2 is the voltage across C_2 ?

$$C = \frac{Q}{V} = \frac{V}{C}$$

$$\frac{V_2}{V_1} = \frac{Q_2/C_2}{Q_1/C_1} \quad \text{since } Q_2 = Q_1$$

$$\frac{V_2}{V_1} = \frac{C_1}{C_2} = \frac{20}{15} = \frac{4}{3} = \frac{1.33}{1.33}$$

Consider the circuit below with $V_{
m b} = 5.40$ V, $R_1 = 150$ Ω , $R_2 = 185$ Ω and $R_3 = 230$ Ω . Find the voltage across R_2 .

Wire Loop

The circuit below consists of a battery and a tungsten wire. As shown in the figure, the tungsten wire has a thin (small radius) section in the middle. What happens to the current as it moves from the thick section of the wire to the thin section?

The circuit below consists of a battery and a tungsten wire. As shown in the figure, the tungsten wire has a thin (small radius) section in the middle. As charges move from the thick section of wire to the thin section, what happens to the drift velocity?

If $C_x = 1.6C_0$, find the equivalent capacitance between the circuit nodes A and B.

Stored energy

A parallel plate capacitor with plate separation d_0 is charged by connecting it to a battery. The energy stored by the capacitor is U_0 . The battery is then disconnected and the plate separation is changed to $d_1 = 2.4 d_0$. If U_1 is the energy stored by the capacitor when the plate separation is d_1 , what is the ratio U_1/U_0 ?

- (a) 0.645
- O (b) 0.417
- (c) 5.76
- O (d) 1.55
- (e) 2.4

○ (f) 0.174

 $C = \varepsilon_0 \frac{A}{T}$

 $U_o = \frac{Q^2}{2C_o}$

 $\frac{U_1}{U_0} = \frac{Q^2/2C_1}{Q^2/2C_0} = \frac{C_0}{C_1}$

 $U_1 = \frac{R^2}{2C_1} \begin{cases} 2 & \text{atter battery} \\ \text{disconnected} \\ \text{charge on} \\ \text{Plates cannot} \end{cases}$ change.

 $\frac{U_1}{U_0} = \frac{\varepsilon_0 A/d_0}{\varepsilon_0 A/d_1} = \frac{d_1}{d_0} = \begin{bmatrix} 2.4 \end{bmatrix}$

The power rating of a $2.20 \text{ k}\Omega$ resistor is 1.00 W. What is the maximum voltage that can be applied across this resistor?

- (a) 2.2e+03 V
- (b) 1.48 V
- (c) 0.0213 V
- O (d) 2.2 V
- O (e) 46.9 V

 $P = V^2$ R $V_{max} = \sqrt{PR} = \sqrt{(2200W)(1W)}$ = 46.9 V

The Kirchhoff loop rule is a statement of which conservation princple?

- \bigcirc (a) conservation of charge
- \bigcirc (b) conservation of entropy
- \bigcirc (c) conservation of momentum
- (d) conservation of energy
- (e) conservation of angular momentum

Net Change in P.E. at a charge around a closed loop in a civenit is zero.

A charge crossing a surface due to a proton beam is given by $Q = 5.0t^3 + 4.0t^2 + 6.0$ where Q is measured in Coulombs and the time t is measured in seconds. What is the current due to the proton beam when t = 1.0 s.

- (a) 23 A
 (b) 14 A
 (c) 23 A
- O (d) 14 A
- O (e) 15 A

 $T = \frac{dQ}{dt} = (3)(5)t^{2} + (2)(4)t$ = 23 A