A pair of capacitors $C_{1}=38.0 \mu \mathrm{~F}$ and $C_{2}=28.0 \mu \mathrm{~F}$ are connected to a battery $V_{\mathrm{b}}=60.0 \mathrm{~V}$ and a switch. The capacitors are initially uncharged. After the switch has been closed and the capacitors are fully charged, what is the ratio Q_{2} / Q_{1} of the charges on the capacitors, where Q_{1} is the charge on C_{1} and Q_{2} is the charge on C_{2} ?

(a) 0.543
(b) 1.36

O (c) 0.737
(d) 1.84

0
(e) 1

For capacitors in series

A pair of capacitors $C_{1}=20.0 \mu \mathrm{~F}$ and $C_{2}=15.0 \mu \mathrm{~F}$ are connected to a battery $V_{\mathrm{b}}=60.0 \mathrm{~V}$ and a switch l The capacitors are initially uncharged. After the switch has been closed and the capacitors are fully charged, what is the ratio V_{2} / V_{1} of the voltages across the capacitors, where V_{1} is the voltage across C_{1} and V_{2} is the voltage across C_{2} ?

ORa) 1.33
(b) 1
(c) 0.562
(d) 0.75

O (e) 1.78

$$
\frac{V_{2}}{V_{1}}=\frac{C_{1}}{C_{2}}=\frac{20}{15}=\frac{4}{3}=1.33
$$

Consider the circuit below with $V_{\mathrm{b}}=5.40 \mathrm{~V}, R_{1}=150 \Omega_{,} R_{2}=185 \Omega$ and $R_{3}=230 \Omega$. Find the voltage across R_{2}.

(a) 3.96 V
(b) 4.92 V

O (c) 3.21 V
0 (d) 2.19 V
O (e) 5.4 V

$$
I=\frac{V_{b}}{R_{1}+R_{p}}=\frac{5.4 \mathrm{~V}}{150 \Omega+102.5 \Omega}=0.0214 \mathrm{~A}
$$

$$
V_{2}=V_{b}-I R_{1}=2.19 \mathrm{~V}
$$

$$
V_{2}=I R_{p}=2: 19 \mathrm{~V}
$$

The circuit below consists of a battery and a tungsten wire. As shown in the figure, the tungsten wire has a thin (small radius) section in the middle. What happens to the current as it moves from the thick section of the wire to the thin section?
(a) The current decreases.
(b) The current is zero.(c) The current increases.(d) The current is unchanged.(e) More information is needed.

$$
\text { current } I_{1} \text { is sane }
$$

in all resistors.

The circuit below consists of a battery and a tungsten wire. As shown in the figure, the tungsten wire has a thin (small radius) section in the middle. As charges move from the thick section of wire to the thin section, what happens to the drift velocity?
(a) The drift velocity increases.(b) The drift velocity decreases.(c) The difit velocity is unchanged.(d) The drfit velocity is zero.(e) More information is needed.

If $C_{x}=1.6 C_{0}$, find the equivalent capacitance between the circuit nodes A and B .

(a) $1.6 C_{0}^{\prime}$
(b) $2.6 C_{0}$
(c) $0.5 C_{0}^{\prime}$

0
(d) $2.82 C_{0}$
(e) $0.722 C_{0}^{\prime}$

$$
\begin{aligned}
\frac{1}{C_{e q 1}} & =\frac{1}{C_{n}}+\frac{1}{C_{0}} \\
& =\frac{2}{C_{0}} \\
\therefore C_{e_{q}} & =\frac{C_{0}}{2}
\end{aligned}
$$

$$
C_{\text {qq } 2}=C_{0}+C_{x}
$$

$$
\therefore C_{\operatorname{eq} 3}=\frac{C_{0}\left(C_{0}+C_{x}\right)}{2 C_{0}+C_{x}}
$$

$$
\therefore C_{\text {eq }}=C_{\text {eq }}+C_{x}+C_{\text {eq }}=\frac{C_{0}}{2}+C_{x}+\frac{C_{0}\left(C_{0}+C_{x}\right)}{2 C_{0}+C_{x}}=2.82 C_{0}
$$

A parallel plate capacitor with plate separation d_{0} is charged by connecting it to a battery. The energy stored by the capacitor is U_{0}. The battery is then disconnected and the plate separation is changed to $d_{1}=2.4 d_{0}$. If U_{1} is the energy stored by the capacitor when the plate separation is d_{1}, what is the ratio U_{1} / U_{0} ?
(a) 0.645
(b) 0.417
(c) 5.76

$$
u_{0}=\frac{Q^{2}}{2 C_{0}}
$$

$$
u_{1}=\frac{X^{2}}{2 C_{1}}
$$

(d) 1.55

$$
\left\{\begin{array}{l}
\text { after battery } \\
\text { disconmeitral } \\
\text { charge on }
\end{array}\right.
$$

plates cannot(e) 2.4
change.
(f) 0.174

$$
\begin{gathered}
\therefore \frac{u_{1}}{u_{0}}=\frac{Q^{2} / 2 c_{1}}{Q^{2} / 2 c_{0}}=\frac{C_{0}}{C_{1}} \\
c=\varepsilon_{0} \frac{A}{d} \\
\therefore \frac{u_{1}}{u_{0}}=\frac{\varepsilon_{0} A / d_{0}}{\varepsilon_{0} A / d_{1}}=\frac{d_{1}}{d_{0}}=2.4
\end{gathered}
$$

The power rating of a $2.20 \mathrm{k} \Omega$ resistor is 1.00 W . What is the maximum voltage that can be applied across this resistor?(a) $2.2 \mathrm{e}+03 \mathrm{~V}$(b) 1.48 V(c) 0.0213 V

$$
P=\frac{V^{2}}{R}
$$(d) 2.2 V

(e) 46.9 V

$$
\begin{aligned}
\therefore V_{\max }=\sqrt{P R} & =\sqrt{(2200 w)(1 w)} \\
& =46.9 \mathrm{~V}
\end{aligned}
$$

The Kirchhoff loop rule is a statement of which conservation princple?(a) conservation of charge(b) conservation of entropy(c) conservation of momentum

Net change in P.E. ot a charge around a closed loop in a(d) conservation of energy
circuit is zero.(e) conservation of angular momentum

A charge crossing a surface due to a proton beam is given by $Q=5.0 t^{3}+4.0 t^{2}+6.0$ where Q is measured in Coulombs and the time t is measured in seconds. What is the current due to the proton beam when $t=1.0 \mathrm{~s}$.

O a) 23 A
(b) 14 A
$I=\frac{d Q}{d t}=(3)(5) t^{2}+(2)(4) t$
(c) 23 A
(d) 14 A

$$
=23 \mathrm{~A}
$$

(e) 15 A

